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For the rotating analyser crystal spectrometer ROTAX we have developed a new class 
of scans through (8,0)-sp ace which will considerably enhance the flexibility of the 
instrument. We will show the principles of these scans and discuss their advantages and 
IiIllititiOnS. 

Further we will present new developments in visuaiisarion and interpretation of 
detector data based on the 2-dimensional (time versus position) display of the JULIOS 
scintillation detector_ 

l_) Introduction 

The spectrometer ROTAX uses a non-uniformly spinning crystal analyser for the 
neutrons scattered by a single crystal sample. The programmable motion of this 
analyser enables the user to scan different paths through @+)-space of the sample. In 
this paper we will concentrate on new developments in scan construction for the 
analyser and the visualisation of the corresponding dam on the detector. A general 

description of the instrumenr, its performance and currem status can be found in [ 11. 
The van’ous possibilities to consuuct different time-of-flight scans are the key to the 
flexibility of ROTAX. So far several types of scans have been introduced where a 
particular value, e.g. the energy transfer, is kept consider. Concerning paths along a 
given Q-direction we have presented the ‘conx-+’ scan (+=~.$a) to measure e.g. 
longitudinal phonons (2-41. 
However, there is no restriction to use only those scan types. Instead, Q-scans can be 
performed in a much more generalized form that are feasible within the limits of the 
analyser drive: 
In principle, the spectrometer can perform a scan along any Q-direction with respect to 
a chosen Q-vector. This makes it possible to scan linearly through a particular point in 
@,w)-space along a selected direction, like a symmetry axis of the crystal. As a special 
case we should mention the ‘transverse-q’ scan where the scan direction is 
perpendicular to a chosen Q-vector, e.g. to measure transversal phonons. 
For these ‘linear Q-scans” we will discuss the accessible a- and Eiw-range in 
accordance with geometrical factors and the limitations in the dynamics of the analyser 
drive. 
In. addition to new scan constructions we will present new developments to visualize 
detector data in combination with real motor performance data. 



The JULIOS scintillation detector on ROTAX gives a 2-dimensional data display, 
time-of-flight versus position. Due to the unambiguous scattering conditions on 
ROTAX, these detector coordinates caa be expressed in terms of a and liw, and thus, 
projections of the reciprocal lattice of the sample or contour lines of the energy 
transfer can be plotted in the same display. Furthermore, the time-of-flight scan 
trajectory is also transferred to these coordinates. 
This simultaneous observation of detector data within the projection of (a+)-space 
and the analyser scan onto the same display provides a valuable and effective help in 
preparing meaningful scans on ROTAX and judging the gathered data afterwards. 

2.) Principles of the linear Q-scans 

a) Definitions and basic relations 

Before the possibilities of these Q-scans are discussed within motor dynamics and 
physical relevance we introduce the variables and definitions that are needed for 
further considerations. 
The reciprocal lattice (&pace) of the sample is usually described in terms of Miller 
indices (h&,1). Concerning the scattering plane these vectors can be transformed to a 
cartesian coordinate system with axes Q, and QY The Q,-direction (a symmetry 
direction of the sample) is used as a reference with respect of the incoming neutrons 
6) defining the angle R = LL@.&) as the orientation angle of the reciprocal lattice 
in the spectrometer set-up. Further we refer to the angles $ = ~(a,&) and cp = 
&&,~), the scattering angle at the sample, Fig. 1 shows the details. It should be noted 
that all angles are counted positive when pointing anti-clockwise. 

Fig. 1: Definition of the coordinate system in reciprocal space with the relevant angles. 
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From fig. 1 we deduce the basic relationship between Q, k and kf : 

QX = Q-cos(+-Q) = k+osQ - k,cos(T-52) 

QY =Q~sin(+-~)=-k~sinS2-kr~sin(~-~) 
0) 

For further use we will also need the following definirions for time-of-flight and Bragg 
angle of the analyser: 

ti=m,Li/hki ( L = distance moderator to sample ) (2) 

t 3 = m,L,/Ekf ( L, = distance sample to anatyser ) (3) 

sin@, = n / d, kf ( d, = d-spacing of the analyser ) (4) 

Now, a linear Q-scan is defined by two vectors: A starting point (a,,) and the direction 
to be scanned (a,). Both may be given in (h&$)-values or directly in the x-y- 
coordinate system given above. In these coordinates the two vectors def?ne the angles- 
o! and 0 as shown in fig. 2 . 

Fig. 2: Detition of the angles a and P for start poinr a’, and scan direction a,, 

In order to perform the scan we have to vary just one value, the siie of 0, . This fact 
is expressed by a scan parameter p in the following way: 

Q,(P) = P-Qo (5) 

With the angles from fig. 2 we then get a general expression for a along the scan in 
dependence of p: 

Q,@) = Qo. ( cos a + pa cos D ) 

Q,(p) = Q,.(sincr t p%nP) 
(6) 

The starting point 0, is included in these equation for p = 0. A scan can be 
performed from a value pmin < 0 to pmax > 0 which will be given by the geometrical 
spectrometer set-up and limitations in the dy-nam.ics of the analyser drive. 

Combining eq. 6 with eq. 1 yields the variarion of k and k, during the scan : 

k(p)=-Q,.[sin(cr+Q-~)+p-sin(P+-SJ-cp)]/sincp 

k,(P) = -QO*[sin(o:+n)+p.sin(P+R)]/sincp 
(7) 

I- 294 



For a given set of angles (M, 13, Q, ‘p) these equations can be used to determine the 
principle range for p and thus the scan length. A chosen time window for q yields the 
possible k-range (eq. 2) while the k+ange is given by the possible analyser angles 0, 
(eq. 4). Using these limitations for k and k, in eq. 7 we easily get the limits for p as 
well. 
Further, from eq. 7 we can derive an expression for the energy transfer &I during a 
scan: 

&d(p) = - @/2m,. Q; +in(2~~+2s1-(~)+2p-~in(ar+~+2~2-~) 

+pz.sin(2P+252-cp)]/sincp (8) 

This equation may also be used to determine a range for p by setting lower and upper 
limits for ho to establish reasonable energy transfer values during a chosen scan 
Besides the range of p these equations for k, 4 and ho provide a guideline for the 
choice of the geometrical set-up: The user may wish specific values for the wave- 
vectors or the energy transfer at the starting point a,. Thus, setting p.=O;. eq. 7 and 8 
yield conditions between the angles o(, $2 and ‘p. If, for example, we want ho = 0 at a0 
we get the condition 2a + 252 - ‘p = n- x from eq. 8.. 
In addition, even the variation of the energy transfer with respect to the scan direction 
can be used as a selection rule for the angles: 

d@WQ, = @@4/W / (dQ,/dp) = (d@)/dp) / Q,, (9) 

b) Motor dynamics 

So far we have derived the basic equations and principle limitations for linear Q-scans. 
Another important consideration is the dynamics of the analyser drive, or in other 
words, can the motor drive perform the necessary rotation within its technical limits ? 
In order to answer this question we have to look at motor speed and angular 
acceleration, i.e., the derivatives of 0, with respect to time. At this place we will not 
go through all the mathematics but instead give a short outline of the procedure and 
present the result for the motor speed as an example. This result ‘is a good startpoint 
for discussion as well. 

The arrival time tA of the neutrons at the analyser is given by the sum $ + t, (eq. 2,3) 
and, like the analyser angle, it is expressed in dependence of the scan parameter p : 

@A = oA(kf@)) and tA = $(k,@)) + &(kf@)) (10) 

So we can evaluate the derivatives 

d@Jdp = dOJdkf - dk,/dp and 
(11) 

dtpJdp = dtJdk+ - dk,/dp + dt&k, - dk,/dp 

as well as 

d0Jdp = d0Jdt, - dtpJdp with d0Jdt, = wA _ (12) 

A combination of these equations yields an expression for the motor speed @A 



Similarly further. derivadves can be ticuiared, too. For oA we gen 

oA = (7~ ii / m, Li d_J . [ cos 0, . ( (; + r2. x ) I-’ ‘-13) 

with 

x=sin(P+R-g,)/sin(B+R), <=L.JI+, 7=lqlk, (14) 

Apart of the dependencies of 0, kf and k this equation shows a dramatic influence of 
the parameter x which absolute value can range from zero to infinity. We will discuss 
the two resulting extrema for w_~ : 
First, eq. 13 shows that the term in square brackets vanishes for x = - c/r2 , i.e., we 
oet very high speeds around that x-value which is approximately around zero since C is b 
very small (C=O.O3). Thus no scans are possible in a range around B = 9 - R . 

In terms of physics: All scattered neutrons during the scan would arrive at the analyser 
at one specific time, 
On the other hand, we may choose /3 = - Q which yields inl?nity for x and 
correspondin~y tiA = 0 . Thus the analyser stands still and all scattered neutrons 
during the scan must have the same energy. This is confirmed by eq. 7 where 
fl = CJI - R yields kf independenr of p. In fact, this mode is used on PRISMA [5]_ 
These considerations also hold for the higher order derivatives of 8, since they 
contain the square bracket term from eq. 13 as well. But nevertheless, the motor limits 
for these values must be checked for each scan, especially the angular acceleration is 
the limiting factor rather than the speed since this paramerer is directly related to the 
necessary motor current. In total, all the limiting factors are checked automaticly in the 
scan construction program so that the user always gets me maximum length of a 
chosen scan within the technical limits. 

c) Examples 

The following figures will show some examples of possible scans using an ahrminium 
sample (lattice constant = 6.22 A) and a germanium analyser (4,0, O-reflection, 

dA = 1.414 A). The lengths (Li = 14.1 m, L, = 0.66 m) are realised on RQ’TAX. 
The fig. 3a and 3b both show the reciprocal lattice of the sample in relative units 

(40,O and O&O) h w ere we take the first vector as reference direction (a = 0). Also 
shown are constant energy lines to get an estimate which energy range the scans cover. 
The scan paths themselves are drawn for different angles fl as solid lines which spread 
out from Qo. The step width for 13 is 1” in fig. 3. 
In addition to the technical limitations we have resnicted the scan len,ti to an energy 
transfer interval of -20 meV c Eio < 200 meV. Therefore the scan paths either end 
at the corresponding energy lines or - if shorter - the motor dynamics determines 
their lengths. The accessible k- and b-range is also included which can partly be seen 
as dashed lines. 
According to the discussion of the influence of 0 on the motor speed we have 
indicated the directions /3 = - R (PRISMA mode) and /3 = 9, - n (infinite speed). Both 
figures show clearly the gap around /3 = cp - R while for 0 = - R only the chosen 
energy interval determines the scan length. 
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Fig. 3a,b: Feasible scan paths (solid lines) in reciprocal space for two different configurations. 

The dotted lines show the energy transfer in meV. 

3a) a =O", p = -6O“, R = 60”, 3b) a = -25.6”, ‘p = -40°, $2 = 100” 
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Fig. 3a shows a configuration with a,, = (4,0,0), thus O! = O”, and 9, = - 60”, $2 := 60” 
which is favourable for scans with a low energy transfer pointing approximately along 
the (l,O,O)-direction In fact we have chosen ho@= 0) = 0 which reuks from 
2(ar+R)-qJ = 180” here (cf. eq. 8) and thus we are able to include an elasric scan path 
as well. Concerning higher energy transfers one may choose a scan along (1,-eLO). 
Instead fig. 3b shows a quite different behavior. Here we have set a, = (4,-2,0), thus 
NC-- 25.6’, and q~ = - 40°, R = 100”. Scans may be chosen around (l,-l,O)-direction 
with low energy transfer while scans with higher hio-values are both possible along 

(LO,O) and (OAO). 
These two examples shall demonstrate that we get a wide range of dif&erent scan 
directions and different energy ranges. Certainly the technical limits of the analyser 
drive cut out some regions but with a proper set-up there will always be a. possibility 
for a desired 0 and energy range. 

2.) Data visualisation 

a) The JULIOS display 

The ROTAX instrument uses the JULIOS scintillation detector from Kw Jiilich [6]_ 
This detector provides a 2-dimensional display: Position channels in the horizontal 
direction, time-of-flight channels in the vertical. 
In relation to the analyser, each position channel corresponds to a specific Bragg angle 
there and can therefore be related to a well-defined kf. Thus, when k, is known, each 
time channel can be used to calculate also k;.. Fig. 4 shows the basic geometry wirh 
all parameters. The orientation of the detector is defined by a reference channel n, 
with a corresponding angle 2Q,. 

For 

Fig. 4: Definitions of lengths and angles between analyser and detector position channels. 

a specific position channel i we get from the geomeny 

L,, . tan ( 20,(i) - 20, ) = Lo - ( i - n,, )/n, 

L,(i) = L,, / cos ( 20,(i) - 20,, ) 

(13 

(16) 
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k,(i) = TI / f d, - sin Q,(i) 1 (17) 

The time channels (from 1 to ny) correspond to a user-chosen time window reaching 
from t, to I+ For a specific time channel j we then get the total time-of-flight 

tO’) = tl + 02 - tJ - j / ny (18) 

and with eq. 17 the incident time-of-flight and k : 

t&j> = t(i) - m, * ( W) + L, > / 5 kf(i) 

J$,j) = m, Li / B 4(Lj) 

(19) 

(20) 

b) Projections of (cm)-space 

As we have seen in the previous section we can relate every pixel (ij) of the detector 
display to a pair k(ij) and b(i)_ Therefore we are able to calculate the Q-components 
(eq. 1) and the energy transfer for each pixel as well. This is used to create a grid of 
two chosen &vectors and energy lines similar to fig. 3. However,. due to the non- 
linearities in eq_ 15 to 20 a rectangular reciprocal lattice (as the ahnninum grid in 
fig 3) appears highly deformed_ Thus, different Brillouin-zones of actually the same 
size cover more or less pixels on the detector screen depending on their related values 
in position and time. In addition, as done in fig. 3, any scan can be plotted in the 
same display. 
This provides a helpful tool for the user. 
- The user knows in advance how the reciprocal la&e, energy transfer and the scan 

are related with the grid of detector channels. The size of a specific Brillouin-zone or 
the density of constant-energy lines gives an estimate for the expected resolution. 
- During an experiment the user can easily interprete intensities, not only along the 

scan path but also near or perpendicular to it This shows immediately how far a 
measured excitation is extended into the Brillouin-zone or how broad it is in energy. 

c) Application 

All these theoretical considerations have been applied to inelastic data obtained with 
ROTAX [ 1,4] using an aluminum sample. IIt a scan along (l,O,O)-direction we have 
measured longitudinal phonons simultaneously in two different Brillouin-zones. Fig. 5 
shows the results with the projection of the reciprocal lattice, energy transfer and the 
scan path into the display. Instead of the real colour display three different count-rate 
levels are selected. The graphics shows the defacing of the quadratic lattice. The zone 
around (2,0,0) is much larger on the display than the next zone around (4,0,0). But the 
display shows also interesting details confering the information perpendicular to the 
scan The inelastic scattering intensity distributions are slightly asymmetric off the scan 
path and, with greater distance from the zone centers, tilted towards higher values of 
ho. This is, in fact, a resolution effeq arising form the dispersion of the phonon 
branches, and made visible as a whole directly on the detector screen. 
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Fig. 5: The detector display with inelastic data and the projetion of (a,@)-space. The energy 

traix.f&r is given in meV, the reciprocal lattice in relative units (as in fig. 3). 
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